IMPACT: a strategic partnership for sustainable development in marine systems and robotics

Marine Systems & Robotics Unit 02 – AUV Modelling

http://impact.uni-bremen.de/

University of Zagreb

Introduction

What is AUV Modelling?

• Mathematical Equation of Motion computing the robot position, velocity and acceleration given a control input (thruster velocity f.i.)

What is it needed for?

• **Simulation:** It allows to simulate the behaviour of the robot in a computer

 Control: It allows to use control methods that account for the robot dynamics

Fig. 8.22. Block scheme of joint space inverse dynamics control $% \mathcal{F}(\mathcal{F})$

Universitat de Girona

Fig. 1.2. Reference frames: NED (*N*-*f* rame) and body-fixed (*B*-*f* rame))

National Technical **University** of

۷_b

 \mathbf{y}_{b}

X_b

- **{I}** Origin at the centre of the earth Inertial Non-rotating wrt sky fixed stars
- **{E}** Origin at the centre of the earth Rotates with the earth $\boldsymbol{\omega}_{ie}^{i} = [0 \ 0 \ \Omega]^{T}$
- **{N}** Origin at P on the earth surface Plane XY tg to earth surface P is a mobile point Axis pointing North-East-Down $\omega^n_{en} \not= 0$
- **{B}** Vehicle Body fixed

frame

AUV Kinematics of Position

- $\eta_1 = [x \ y \ z]^T \in \mathbb{R}^3$: vehicle position in the N-frame.
- $\eta_2 = [\phi \ \theta \ \psi]^T \in \mathbb{R}^3$: vehicle RPY attitude.
- $\eta = [\eta_1^T \ \eta_2^T]^T = [x \ y \ z \ \phi \ \theta \ \psi]^T$: vehicle pose in N-frame.

echnical

Iniversity of

AUV Kinematics: 6DOF Pose

AUV Kinematics of Velocity

• $\nu_1 = [u \ v \ w]^T \in \mathbb{R}^3$: linear velocity in the B-frame.

- $\nu_2 = [p \ q \ r]^T \in \mathbb{R}^3$: angular velocity in the B-frame.
- $\nu = [\nu_1^T \ \nu_2^T]^T = [u \ v \ w \ p \ q \ r]^T$: velocitiy in B-frame.
- $\dot{\eta} = [\dot{\eta_1}^T \ \dot{\eta_2}^T]^T = [\dot{x} \ \dot{y} \ \dot{z} \ \dot{\phi} \ \dot{\theta} \ \dot{\psi}]^T$: vehicle pose derivative in N-frame.

Trarum V JACOBS UNIVERSITY

AUV Kinematics of Velocity

Technical

University of Athens

$$\dot{\eta_2} = J_{\nu_2}(\eta_2) \cdot \nu_2$$
How can we compute $J_{\nu_2}(\eta_2)$?
$$\nu_2 = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ R_{\phi,x} \\ B_{R_2} \end{bmatrix} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} R_{\theta,y}R_{\phi,x} \\ R_{g,x} \end{bmatrix}^T \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ R_{g,x} \\ B_{R_1} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ 0 \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ R_{g,x} \\ B_{R_1} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ 0 \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ R_{g,x} \\ R_{g,x} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ 0 \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ 0 \\ -s_{\phi}\dot{\theta} + s_{\phi}c_{\theta}\dot{\psi} \\ -s_{\phi}\dot{\theta} + c_{\phi}c_{\theta}\dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -s_{\theta} \\ 0 & c_{\theta} & s_{\phi}c_{\theta} \\ 0 & -s_{\phi} & c_{\phi}c_{\theta} \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} J_{\nu_2}(\eta_2)^{-1}\eta_2 \\ J_{\nu_2}(\eta_2) = \begin{bmatrix} 1 & \sin\phi\tan\theta & \cos\phi\tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \frac{\sin\phi}{\cos\theta} & \frac{\cos\phi}{\cos\theta} \end{bmatrix}$$

University of Zagreb

de Girona

 $\overline{}$

Marine Systems & Robotics - Unit 02: AUV Modelling

JACOBS UNIVERSITY

marum

AUV Kinematics Summary

• $\eta = [\eta_1^T \ \eta_2^T]^T = [x \ y \ z \ \phi \ \theta \ \psi]^T$: vehicle pose in N-frame.

- $\nu = [\nu_1^T \ \nu_2^T]^T = [u \ v \ w \ p \ q \ r]^T$: velocitiy in B-frame.
- $\dot{\eta} = [\dot{\eta_1}^T \ \dot{\eta_2}^T]^T = [\dot{x} \ \dot{y} \ \dot{z} \ \dot{\phi} \ \dot{\theta} \ \dot{\psi}]^T$: vehicle pose derivative in N-frame.

niversity of

Equations of Motion

Lineal motion [Newton 2nd's Law]:

 $\boldsymbol{\tau_1} = \boldsymbol{m} \cdot \boldsymbol{a_{EC_1}} = \boldsymbol{m} \left(\boldsymbol{\nu_{NB_2}} \times \boldsymbol{\nu_{NB_1}} + \dot{\boldsymbol{\nu}_{NB_1}} + \boldsymbol{\nu_{NB_2}} \times (\boldsymbol{\nu_{NB_2}} \times \boldsymbol{r_C}) + \dot{\boldsymbol{\nu}_{NB_2}} \times \boldsymbol{r_C} \right)$

Angular motion [Euler Rotation Equation]:

 $\boldsymbol{\tau}_{\boldsymbol{B_2}} = \boldsymbol{m} \cdot \boldsymbol{r_C} \times (\dot{\boldsymbol{\nu}}_{\boldsymbol{NB_1}} + \boldsymbol{\nu}_{\boldsymbol{NB_2}} \times \boldsymbol{\nu}_{\boldsymbol{NB_1}}) + {}^{\boldsymbol{N}}\boldsymbol{I_B} \cdot \dot{\boldsymbol{\nu}}_{\boldsymbol{NB_2}} + \boldsymbol{\nu}_{\boldsymbol{NB_2}} \times {}^{\boldsymbol{N}}\boldsymbol{I_B} \cdot \boldsymbol{\nu}_{\boldsymbol{NB_2}}$

Equations of Motion

Lineal motion [Newton 2nd's Law]: $\tau_{1} = m \cdot a_{EC_{1}} = m \left(\nu_{NB_{2}} \times \nu_{NB_{1}} + \dot{\nu}_{NB_{1}} + \nu_{NB_{2}} \mathbf{0}_{\mathbf{3} \times \mathbf{3}_{2}} \times r_{C} \right) + \mathbf{0}_{\mathbf{3} \times \mathbf{3}} r_{C} \right)$ Angular motion [Euler Rotation Equation]: $\tau_{B_{2}} = m \cdot r_{C} \times \left(\nu \mathbf{0}_{\mathbf{3} \times \mathbf{3}} \nu_{NB_{2}} \times \nu_{NB_{1}} \right) + {}^{N}I_{B} \cdot \dot{\nu}_{NB_{2}} + \nu_{NB_{2}} \times {}^{N}I_{B} \cdot \nu_{NB_{2}}$

Equations of Motion

Lineal motion [Newton 2nd's Law]: $\tau_1 = m \cdot a_{EC_1} = m \left(\nu_{NB_2} \times \nu_{NB_1} + \dot{\nu}_{NB_1} \right)$

Angular motion [Euler Rotation Equation]: $au_{B_2} = {}^N I_B \cdot \dot{
u}_{NB_2} +
u_{NB_2} imes {}^N I_B \cdot
u_{NB_2}$ Newton-Euler Equations of Motion With *r*_{*c*}**=0**

Equations of Motion

Equations of Motion

TÉCNICO LISBOA

Equations of Motion

Lineal motion [Newton 2nd's Law]: $\tau_{1} = m \cdot a_{EC_{1}} = m \left(\nu_{NB_{2}} \times \nu_{NB_{1}} + \dot{\nu}_{NB_{1}} \right)$ Angular motion [Euler Rotation Equation]: $\tau_{B_{2}} = {}^{N}I_{B} \cdot \dot{\nu}_{NB_{2}} + \nu_{NB_{2}} \times {}^{N}I_{B} \cdot \nu_{NB_{2}}$ Angular Angular Acceleration

Newton-Euler Equations of Motion With *r_c=0*

Equations of Motion

Equations of Motion

Linear motion [Newton 2nd's Law]: $\tau_1 = m \cdot a_{EC_1} = m (\nu_{NB_2} \times \nu_{NB_1} + \dot{\nu}_{NB_1})$

Angular motion [Euler Rotation Equation]: $\tau_{B_2} = {}^N I_B \cdot \dot{\nu}_{NB_2} + \nu_{NB_2} \times {}^N I_B \cdot \nu_{NB_2}$

Matrix Equations of Motion

$$\begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} mI_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{0}_{3\times3} & ^{N}I_B \end{bmatrix} \begin{bmatrix} \dot{\nu}_{NB_1} \\ \dot{\nu}_{NB_2} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3\times3} & -m[\nu_{NB_1}]_{\times} \\ \mathbf{0}_{3\times3} & -[^{N}I_B\nu_{NB_2}]_{\times} \end{bmatrix} \begin{bmatrix} \nu_{NB_1} \\ \nu_{NB_2} \end{bmatrix}$$

Can be expressed as:
$$\tau_{RB} = M_{RB}\dot{\nu} + C_{RB}(\nu)\nu$$

where $M_{RB} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = \begin{bmatrix} mI_{3\times3} & -m[r_C]_{\times} \\ m[r_C]_{\times} & NI_B \end{bmatrix}$
 $\mathbf{r} = \begin{bmatrix} x \ y \ z \end{bmatrix}^T$
 $\mathbf{v} = \begin{bmatrix} a \ b \ c \end{bmatrix}^T \Rightarrow \mathbf{r} \times \mathbf{v} = [\mathbf{r}]_{\times}\mathbf{v} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -bz + yc \\ za - xc \\ -ya + xb \end{bmatrix}$

Inertia

Tensotial tensor describes the mass distribution of the body

$$\mathbf{N}_{IB} = -\int_{v} [\eta_{i}]_{x}^{2} \cdot \rho \cdot dv = -\int_{v} \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}^{2} \cdot \rho \cdot dv$$

$$= \int_{v} \begin{bmatrix} y^{2} + z^{2} & -xy & -xz \\ -yx & x^{2} + z^{2} & -yz \\ -zx & -zy & x^{2} + y^{2} \end{bmatrix} \cdot \rho \cdot dv$$

$$= \begin{bmatrix} \int_{v} (y^{2} + z^{2}) \cdot \rho \cdot dv & -\int_{v} xy \cdot \rho \cdot dv & -\int_{v} xz \cdot \rho \cdot dv \\ -\int_{v} xx \cdot \rho \cdot dv & -\int_{v} xy \cdot \rho \cdot dv & \int_{v} (x^{2} + y^{2}) \cdot \rho \cdot dv \end{bmatrix}$$

$$= \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

$$\mathbf{Virtual}$$

$$\mathbf{Virtual}$$

$$\mathbf{Virtual}$$

$$\mathbf{Virtual}$$

Inertia

Tensotial products involving an axis orthogonal to a symmetry plane are 0

Inertia

Tensofial products involving an axis orthogonal to a symmetry plane are 0

- XZ Symmetry \Rightarrow y \perp XZ \Rightarrow $I_{xy} = I_{yx} = I_{yz} = I_{zy} = 0$
- XY Symmetry $\Rightarrow z \perp XY \Rightarrow I_{xz} = I_{yx} = I_{zz} = I_{zy} = 0$
- YZ Symmetry $\Rightarrow x \perp YZ \Rightarrow I_{xy} = I_{yx} = I_{zx} = 0$

• 2 planes of symmetry means *I* is diagonal:

$$\boldsymbol{I} = Diag\{I_{xx}, I_{yy}, I_{zz}\}$$

Х

Added Mass Forces

Pressure-induced forces required to accelerate a certain amount of surrounding water moving with the vehicle. Opposes to the vehicle motion. They depend on the vehicle shape.

ΓΕϹΝΙϹΟ

_ISBO/

Added Mass Forces

Pressure-induced forces required to accelerate a certain amount of surrounding water moving with the vehicle. Opposes to the vehicle motion. They depend on the vehicle shape.

$$\boldsymbol{\tau_{a}} = -\begin{bmatrix} X_{\dot{u}} & X_{\dot{v}} & X_{\dot{w}} & X_{\dot{p}} & X_{\dot{q}} & X_{\dot{r}} \\ X_{\dot{v}} & Y_{\dot{v}} & Y_{\dot{w}} & Y_{\dot{p}} & Y_{\dot{p}} & Y_{\dot{q}} & Y_{\dot{r}} \\ X_{\dot{w}} & Y_{\dot{w}} & Z_{\dot{w}} & Z_{\dot{p}} & Z_{\dot{q}} & Z_{\dot{r}} \\ X_{\dot{p}} & Y_{\dot{p}} & Z_{\dot{p}} & K_{\dot{p}} & K_{\dot{q}} & K_{\dot{r}} \\ X_{\dot{q}} & Y_{\dot{q}} & Z_{\dot{q}} & K_{\dot{q}} & M_{\dot{q}} & M_{\dot{r}} \\ X_{\dot{r}} & Y_{\dot{r}} & Z_{\dot{r}} & K_{\dot{r}} & M_{\dot{r}} & N_{\dot{r}} \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \\ \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & -a_3 & a_2 \\ 0 & 0 & 0 & -a_3 & a_2 & 0 & -a_1 \\ 0 & -a_3 & a_2 & 0 & -b_3 & b_2 \\ a_3 & 0 & -a_1 & b_3 & 0 & -b_1 \\ -a_2 & a_1 & 0 & -b_2 & b_1 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ p \\ q \\ r \end{bmatrix}$$

$$a_{2} = X_{\dot{v}}u + Y_{\dot{v}}v + Y_{\dot{w}}w + Y_{\dot{p}}p + Y_{\dot{q}}q + Y_{\dot{r}}r$$
Where:

$$a_{3} = X_{\dot{w}}u + Y_{\dot{w}}v + Z_{\dot{w}}w + Z_{\dot{p}}p + Z_{\dot{q}}q + Z_{\dot{r}}r$$

$$b_{1} = X_{\dot{p}}u + Y_{\dot{p}}v + Z_{\dot{p}}w + K_{\dot{p}}p + K_{\dot{q}}q + K_{\dot{r}}r$$

$$b_{2} = X_{\dot{q}}u + Y_{\dot{q}}v + Z_{\dot{q}}w + K_{\dot{q}}p + M_{\dot{q}}q + M_{\dot{r}}r$$

$$b_{3} = X_{\dot{r}}u + Y_{\dot{r}}v + Z_{\dot{r}}w + K_{\dot{r}}p + M_{\dot{r}}q + N_{\dot{r}}r$$

 $M_A=\left[egin{array}{ccc} A_{11}&A_{12}\ A_{21}&A_{22} \end{array}
ight]$

Added Mass Forces

Pressure-induced forces required to accelerate a certain amount of surrounding water moving with the vehicle. Opposes to the vehicle motion. They depend on the vehicle shape.

Can be written using a matrix equation:

$$au_{oldsymbol{A}} = M_{oldsymbol{A}} \dot{oldsymbol{
u}} + C_{oldsymbol{A}}(oldsymbol{
u})oldsymbol{
u}$$

Where:

$$M_A = \left[egin{array}{ccc} A_{11} & A_{12} \ A_{21} & A_{22} \end{array}
ight] \;,\; C_A = \left[egin{array}{ccc} 0_{3 imes 3} & -[A_{11}
u_1 + A_{12}
u_2]_{ imes} \ -[A_{21}
u_1 + A_{22}
u_2]_{ imes} \end{array}
ight]$$

A common simplification is to consider M_A Diagonal

$$M_{A} = Diag\{X_{\dot{u}} \; Y_{\dot{v}} \; Z_{\dot{w}} \; K_{\dot{p}} \; M_{\dot{q}} \; N_{\dot{r}}\}$$

Added Mass Forces

 $\boldsymbol{M}_{\boldsymbol{A}} = Diag\{X_{\dot{\boldsymbol{u}}} \; Y_{\dot{\boldsymbol{v}}} \; Z_{\dot{\boldsymbol{w}}} \; K_{\dot{\boldsymbol{p}}} \; M_{\dot{\boldsymbol{q}}} \; N_{\dot{\boldsymbol{r}}}\}$ $X_{\dot{u}} = -\frac{\alpha_0}{2 - \alpha_0} m$ $Y_{\dot{v}} = -\frac{\beta_0}{2-\beta_0}m$ $Z_{sis}=0$ V $K_{\dot{p}} = M_{\dot{q}} = -\frac{1}{5} \frac{(b^2 - a^2)^2 (\alpha_0 - \beta_0)}{2(b^2 - a^2) + (b^2 + a^2)(\beta_0 - \alpha_0)} m$ z $m = \frac{4}{2}\pi ab^2$ $e^2 = 1 - \left(\frac{b}{a}\right)^2$ $\alpha_{0} = \frac{2(1-e^{2})}{e^{3}} \left(\frac{1}{2}ln\left(\frac{1+e}{1-e}\right) - e\right)$ Universitat Technical University of marum University of JACOBS UNIVERSITY Zagreb le Girona

Restoring Forces

Forces acting on the submerged body trying to bring it to an equilibrium point:

Gravity
Force
$$\tau_{g_1} = m \cdot g$$

 $\tau_g = \begin{bmatrix} BR(\eta)_N \cdot N \tau_{g_1} \\ BR(\eta)_N \cdot r_C \times N \tau_{g_1} \end{bmatrix}$
Buoyancy Force
 $N \tau_{b_1} = -g\rho v$
 $\tau_b = \begin{bmatrix} BR(\eta)_N \cdot N \tau_{b_1} \\ BR(\eta)_N \cdot r_C \times N \tau_{b_1} \end{bmatrix}$
 $W = mg$

Athens

Damping Forces

Skin Friction: Linear Friction due to the laminar boundary layer. **Form Drag:** Quadratic non-linear friction due to the turbulent boundary layer.

Can be written using a matrix equation:

$$au_D^T = - au_{D_{oldsymbol{
u}}}^T \cdot oldsymbol{
u} - au_{D_{oldsymbol{
u}|oldsymbol{
u}|}}^T \cdot oldsymbol{
u} \cdot oldsymbol{
u}|
u|$$

Where:

$$\begin{aligned} \mathbf{\tau}_{\mathbf{D}_{\nu}} &= diag\{X_{u} \; Y_{v} \; Z_{w} \; K_{p} \; M_{q} \; N_{r}\} \\ \mathbf{\tau}_{\mathbf{D}_{\nu|\nu|}} &= diag\{X_{u|u|} \; Y_{v|v|} \; Z_{w|w|} \; K_{p|p|} \; M_{q|q|} \; N_{r|r|}\} \end{aligned}$$

Vational

Technical

niversity of

Thruster Forces

When the propeller rotates at *n* [rev/s] it exerts a thrust *T* and a torque *Q*.

- u[m/s]Surge speed
- n[rev/s] Propeller angular speed
- T[N] Thrust
- Q[Nm]Torqu
- η_p **E**fficiency
- $V_a[m/s]$ Advance Speed (fluid velocity at the propeller when it is at rest) $J = \frac{V_a}{nD}$ Advance Ratio. Distance travelled in one propeller revolution

Thruster Forces

When the propeller rotates at *n* [rev/s] it exerts a thrust *T* and a torque *Q*.

- $T = \rho D^4 K_T(J) n |n|$
- K_{τ} is \approx linear in $J_{K_{T}} = \alpha_{1}J + \alpha_{2}$
- So T becomes

$$T = \rho D^4 (\alpha_1 \frac{V_a}{nD} + \alpha_2) n|n|$$

= $\rho D^4 \alpha_2 n|n| + \rho D^3 \alpha_1 |n| V_a$

• Obtaining a bilinear model

$$T = T_{n|n|} n|n| - T_{|n|V_a} |n|V_a$$
$$T_{n|n|} = \rho D^4 \alpha_2$$
$$T_{|n|V_a} = \rho D^3 \alpha_1$$

National Technical University of Athens

Universitat de Girona

Thruster Forces

When the propeller rotates at *n* [rev/s] it exerts a thrust *T* and a torque *Q*.

$$Q = \rho D^5 K_Q(J) n |n|$$

- K_Q is \approx linear in $J K_Q = \beta_1 J + \beta_2$
- Obtaining a bilinear model

$$Q = Q_{n|n|} n|n| - Q_{|n|V_a} |n|V_a$$
$$Q_{n|n|} = \rho D^4 \beta_2$$
$$Q_{|n|V_a} = \rho D^3 \beta_1$$

Thruster Forces

When the propeller rotates at *n* [rev/s] it exerts a thrust *T* and a torque *Q*.

Environmental Forces

Ocean currents

• A common approach considers only irrotational currents constant in the N-Frame:

$$^{\boldsymbol{N}}\boldsymbol{\nu_{c}} = [^{N}u_{c} \ ^{N}v_{c} \ ^{N}w_{c} \ 0 \ 0 \ 0]^{T}$$

• They can be referenced to the B-Frame:

$$u_{oldsymbol{c}}=J(\eta)^{N}
u_{oldsymbol{c}}$$
 .

• Now we can define the fluid relative velocity:

$$u_r = \nu - \nu_c$$

The Model

Hydrodynamic Model

The complete model includes the rigid body dynamics as well as the hydrodynamics

The Model

Hydrodynamic Model

The complete model includes the rigid body dynamics as well as the hydrodynamics

$$egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & eta & & eta$$

- Taking into account the currents
 - $M\dot{
 u_r}+C(
 u_r)
 u_r+D(
 u_r)
 u_r+G(\eta)= au_{thr}+ au_{fins}+ au_{ext}$

:

National Technical University of Athens

Universitat de Girona

The Model

National

Athens

Technical

University of

University of Zagreb Universitat

de Girona

 $\overline{}$

TÉCNICO LISBOA

Common Simplifications	 The B-Frame is located at the gravity center (r_C = 0). The products of inertia are negligible so <i>I</i> = diag{<i>I</i>_{xx}, <i>I</i> happens when the vehicle has 3 planes of symmetry. The added mass matrix and the damping matrices can be agonal. 	I_{yy}, I_{zz} . This considered di-	
$\begin{bmatrix} X \\ Y \\ Z \\ K \\ M \\ N \end{bmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{bmatrix} x & 0 & 0 & 0 & 0 & 0 \\ 0 & m & 0 & 0 & 0 & 0 \\ 0 & 0 & m & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{xx} & 0 & 0 \\ 0 & 0 & 0 & 0 & I_{yy} & 0 \\ 0 & 0 & 0 & 0 & 0 & I_{zz} \end{bmatrix} - \begin{bmatrix} X_{\dot{u}} & 0 & 0 & 0 & 0 & 0 \\ 0 & Y_{\dot{v}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & X_{\dot{w}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & K_{\dot{p}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & M_{\dot{q}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_{\dot{r}} \end{bmatrix} \right) \begin{bmatrix} x_{\dot{u}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & K_{\dot{p}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & N_{\dot{r}} \end{bmatrix} $	$ \begin{array}{c} \dot{u} \\ \dot{v} \\ \dot{w} \\ \dot{w} \\ \dot{p} \\ \dot{q} \\ \dot{r} \end{array} $	
$+ \left(\begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix} \right)$	$ \begin{bmatrix} 0 & 0 & 0 & mw & -mv \\ 0 & 0 & -mw & 0 & mu \\ 0 & 0 & mv & -mu & 0 \\ mw & -mv & 0 & I_{zz}r & -I_{yy}q \\ 0 & 0 & -I_{zz}r & 0 & I_{xx}p \\ 0 & 0 & I_{yy}q & -I_{xx}p & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -Z_{ib}w & Y_{ib}v \\ Z_{ib}w & 0 & -X_{ib}u \\ -Y_{ib}v & X_{ib}u & 0 \end{bmatrix} $	$egin{array}{cccc} 0 & -Z_{ib}w & 0 \ -Y_{ib}w & X_{ib}u & 0 \ 0 & -N_{ir}r & N_{ir}r & 0 \ -M_{iq}q & K_{ip}p \end{array}$	$ \begin{array}{c} Y_{\dot{v}}v \\ -X_{\dot{u}}u \\ 0 \\ M_{\dot{q}}q \\ -K_{\dot{p}}p \\ 0 \end{array} \end{array} \right) \left[\begin{array}{c} u \\ v \\ w \\ p \\ q \\ r \end{array} \right] $
$+ \left(\begin{bmatrix} X \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right)$	$ \begin{bmatrix} X_u & 0 & 0 & 0 & 0 & 0 \\ 0 & Y_v & 0 & 0 & 0 & 0 \\ 0 & 0 & Z_w & 0 & 0 & 0 \\ 0 & 0 & 0 & K_p & 0 & 0 \\ 0 & 0 & 0 & 0 & M_q & 0 \\ 0 & 0 & 0 & 0 & N_r \end{bmatrix} + \begin{bmatrix} X_{u u } u & 0 & 0 & 0 \\ 0 & Y_{ v v } v & 0 & 0 \\ 0 & 0 & 0 & Z_{ w w} w & 0 \\ 0 & 0 & 0 & 0 & K_{ p} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $	$ \begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \right) \qquad \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} $	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ N_{r r} r \end{bmatrix} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ p \\ q \\ r \end{bmatrix}$
$+ \begin{bmatrix} By_{1} \\ - \\ - \end{bmatrix}$	$ \begin{array}{c} (W-B)sin(\theta) \\ -(W-B)cos(\theta)sin(\phi) \\ -(W-B)cos(\theta)cos(\phi) \\ scos(\theta)cos(\phi) & Bz_bcos(\theta)sin(\phi) \\ sb_bsin(\theta) - Bx_bcos(\theta)cos(\phi) \\ By_bsin(\theta) + Bx_bcos(\theta)sin(\phi) \end{array} \right] $		(1

ECH

JACOBS UNIVERSITY

marum

Model Identification

How do we estimate the 27 parameters of the model?

Model Identification

Let us consider the surge equation of motion:

- If Neutrally Buoyant \Rightarrow W=B
- If the robot performs and a single DOF uncoupled motion $\Rightarrow B=W \& w=q=v=r=0$

$$\begin{split} X - (X_u + X_{u|u|}|u|)u + \tau_p &= (m - X_{\dot{u}})\dot{u}, \\ \dot{u} &= \frac{X}{m - X_{\dot{u}}} - \frac{X_u}{m - X_{\dot{u}}}u - \frac{X_{u|u|}|u|}{m - X_{\dot{u}}}u + \frac{\tau_p}{m - X_{\dot{u}}}. \\ \delta_u & \delta_u & \delta_u & \beta_u & \gamma_u \end{split}$$

• In general, this holds for any DOF *i*:

$$\dot{\nu}_i = \alpha_i \nu_i + \beta_i \nu_i |\nu_i| + \gamma_i \tau_i + \delta_i$$

University of

Zagreb

• An uncoupled experiment is run exciting a single DOF *i*, so the equation of motion is:

$$\dot{\nu}_i = \alpha_i \nu_i + \beta_i \nu_i |\nu_i| + \gamma_i \tau_i + \delta_i$$

• The force position and velocity times series are measured, being used in the following equation which is linear in the set of model parameters

$$\begin{bmatrix} \dot{\nu}_{i_1} \\ \dot{\nu}_{i_2} \\ \vdots \\ \dot{\nu}_{i_N} \end{bmatrix} = \begin{bmatrix} \nu_{i_1} & \nu_{i_1} | \nu_{i_1} | & \tau_{i_1} & \eta_1 \\ \nu_{i_2} & \nu_{i_2} | \nu_{i_2} | & \tau_{i_2} & \eta_2 \\ \vdots & \vdots & \vdots & \vdots \\ \nu_{i_N} & \nu_{i_N} | \nu_{i_N} | & \tau_{i_N} & \eta_N \end{bmatrix} \begin{bmatrix} \alpha_i \\ \beta_i \\ \gamma_i \\ \delta_i \end{bmatrix} + \begin{bmatrix} \varepsilon_{i_1} \\ \varepsilon_{i_2} \\ \vdots \\ \varepsilon_{i_N} \end{bmatrix}$$
$$\boldsymbol{\mathcal{V}} = \boldsymbol{H} \qquad \boldsymbol{\theta}_{LS} + \boldsymbol{\mathcal{E}}$$

• The parameters are estimated through Least-Squares algorithm

$$egin{aligned} \hat{ heta}_{LS} &= (H^T H)^{-1} H^T y \ P_{LS} &= (H^T H)^{-1} \end{aligned}$$

Table 1: Identification results for the surge experiment

				0	1
Experiment		$lpha_i$	γ_i	δ_i	J_i
1	$\hat{ heta}_1$	0.4147	0.0236	-0.0010	1.8432e - 4
	σ_1	0.0025	0.0001	0.0002	
2	$\hat{ heta}_2$	0.4790	0.0321	-0.0090	2.5973e - 4
	σ_2	0.0022	0.0001	0.0002	
3	$\hat{ heta}_3$	0.5153	0.0295	0.0014	2.4150e - 4
	σ_3	0.0021	0.0001	0.0002	
Mean	$\hat{ heta}_{\mu}$	0.4697	0.0284	-0.0028	2.28517e - 4
	σ_{μ}	0.00227	0.0001	0.0002	

Measured speed vs Simulated integral speed vs Simulated direct speed [rad/s]

10

12

14

16

Table 1: Identification results for the yaw experiment

					*
Experiment		$lpha_i$	γ_i	δ_i	J_i
1	$\hat{ heta}_1$	1.3755	0.7564	-0.0964	9.7534e - 4
	σ_1	0.0052	0.0026	0.0010	
2	$\hat{ heta}_2$	1.1785	0.4549	-0.4069	0.0033
	σ_2	0.0082	0.0021	0.0035	
3	$\hat{ heta}_3$	1.1279	0.4936	0.2892	0.0032
	σ_3	0.0109	0.0036	0.0041	
4	$\hat{ heta}_4$	1.7541	0.5038	-0.9643	0.0082
	σ_4	0.0216	0.0058	0.0084	
Mean	$\hat{\theta}_{\mu}$	1.3590	0.5522	-0.2946	0.0039
	σ_{μ}	0.0114	0.0035	0.0043	

4

6

8 1 Time (s)

-2°

2

18

Table 1: Identification results for the pitch experiment

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	$lpha_i$	γ_i	J_i
$\hat{ heta}_1$	0.5783	1.2121	0.3260e - 4
σ_1	0.0027	0.0017	
$\hat{ heta}_2$	0.6122	1.0417	6.7892e - 4
σ_2	0.0039	0.0024	
$\hat{ heta}_3$	0.7092	1.4555	9.0143e - 4
σ_3	0.0037	0.0026	
$\hat{ heta}_{oldsymbol{\mu}}$	0.6332	1.2364	8.3765e - 4
σ_{μ}	0.0034	0.0022	
	$ \begin{array}{c} \hat{\theta}_1 \\ \sigma_1 \\ \hat{\theta}_2 \\ \sigma_2 \\ \hat{\theta}_3 \\ \sigma_3 \\ \hat{\theta}_\mu \\ \sigma_\mu \end{array} $	$\begin{array}{c c} & \alpha_i \\ \hline \theta_1 & 0.5783 \\ \sigma_1 & 0.0027 \\ \hline \theta_2 & 0.6122 \\ \sigma_2 & 0.0039 \\ \hline \theta_3 & 0.7092 \\ \sigma_3 & 0.0037 \\ \hline \theta_\mu & 0.6332 \\ \sigma_\mu & 0.0034 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

National Technical University of Athens

Table 1: URIS UUV hydrodynamical model coefficients						
Buoyancy & Weight			Thruster			
W	294.1995	[N]	$T_{n n _{v_{\#}}}$	0.0000143	$[N/rpm^2]$	
В	5	[N]	$T_{n n _{v_1}}$	0.0000148	$[N/rpm^2]$	
x_b	0.0	[m]	$T_{n n _{h_f}}$	0.0000129	$[N/rpm^2]$	
y_b	0.0	[m]	$T_{n n _{h_h}}$	0.0000125	$[N/rpm^2]$	
z_b	-0.03	[m]				
	Mass & Iner	tia	Added Mass & Inertia			
m	30	[kg]	$X_{\dot{u}}$	5.2112	[kg]	
			$Y_{\hat{v}}$	$\approx X_{\dot{u}}$	[kg]	
			$Z_{\dot{w}}$	$pprox X_{\dot{u}}$	[kg]	
I_{xx}	0.3468	$[kgm^2]$	$K_{\dot{p}}$	$pprox M_{\dot{q}}$	$[kgm^2]$	
I_{yy}	0.3468	$[kgm^2]$	$\dot{M_{\dot{q}}}$	0.46200	$[kgm^2]$	
I_{zz}	0.3468	$[kgm^2]$	N_r	1.46414	$[kgm^2]$	
]	Lineal Damp	ing	Quadratic Damping			
X_u	16.53873	$\left[\frac{Ns}{m}\right]$	$X_{u[u]}$	0	$\left[\frac{Ns^2}{m^2}\right]$	
Y_v	$\approx X_u$	$\left[\frac{Ns}{m}\right]$	$Y_{v v }$	0	$\left[\frac{Ns^2}{m^2}\right]$	
Z_w	$pprox X_u$	$\left[\frac{Ns}{m}\right]$	$Z_{w w }$	0	$\left[\frac{Ns^2}{m^2}\right]$	
K_p	0.51213	$\left[\frac{\widetilde{Ns}}{m}\right]$	$K_{p p }$	0	$\left[\frac{Ns^2}{m^2}\right]$	
M_q	$\approx N_r$	$\left[\frac{Ns}{m}\right]$	$M_{q q }$	0	$\left[\frac{Ns^2}{m^2}\right]$	
N_r	2.46106	$\left[\frac{Ns}{m}\right]$	$N_{r r }$	0	$\left[\frac{Ns^2}{m^2}\right]$	
Control Actuators						
Thruster Position			Thruster Direction			
r_L	$[0 - X \ 0]^T$	[m]	δ_{T_L}	$[1 \ 0 \ 0]^T$	*	
r_R	$[0 \ X \ 0]^T$	[m]	$\delta_{\mathcal{T}_R}$	$[1 \ 0 \ 0]^T$	*	
r_{f}	$[X \ 0 \ 0]^T$	[m]	δ_{T_f}	$[0 \ 0 \ -1]^T$	*	
r_b	$[-X \ 0 \ 0]^T$	[m]	δ_{T_b}	$[0 \ 0 \ -1]^T$	*	
National Technica		Univer	sityof	Universitat	ıft	

Zagreb

Literature

- 1. Thor I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 2011
- 2. Bruno Siciliano, Oussama Khatib, Springer Handbook of Robotics, 2008
- 3. John Carlton, Marine propellers and Propulsion, 2011
- 4. Isermann, Rolf, Münchhof, Marco, Identification of Dynamic Systems, 2011

Questions ?

National Technical University of Athens

Universitat de Girona

