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Introduction

What is AUV Modelling?

• Mathematical Equation of Motion computing the robot position, velocity and 
acceleration given a control input (thruster velocity f.i.)

• Control: It allows to use control 
methods that account for the 
robot dynamics

• Simulation: It allows to 
simulate the behaviour of 
the robot in a computer 

What is it needed for?

AUV model
Propeller

speed

Acceleration
Velocity
Pose
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Reference frames
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AUV Kinematics of Position
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AUV Kinematics: 6DOF Pose

Pose Vector

Homogeneous Matrix
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How to represent the AUV pose?
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AUV Kinematics of Velocity
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AUV Kinematics of Velocity
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AUV Kinematics Summary
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Rigid Body Dynamics
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Forces

• Propulsion
• Control Surfaces
• Restoring Forces (Gravity & Buoyancy)
• Hydrodynamic Forces

• Added Mass
• Friction

• Environmental (Currents)

Newton Euler
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Rigid Body Dynamics

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Angular motion [Euler Rotation Equation]:
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Rigid Body Dynamics

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Chosing {B} in the gravity center rC=0

x

y z

Angular motion [Euler Rotation Equation]:
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Rigid Body Dynamics

Angular motion [Euler Rotation Equation]:

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Newton-Euler Equations of Motion
With rC=0
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Rigid Body Dynamics

Angular motion [Euler Rotation Equation]:

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Linear
Acceleration



Marine Systems & Robotics – Unit 02: AUV Modelling

Rigid Body Dynamics

A line in {I}

Angular motion [Euler Rotation Equation]:

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Coriolis
Acceleration

A Curve in {E}
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Rigid Body Dynamics

Angular motion [Euler Rotation Equation]:

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Newton-Euler Equations of Motion
With rC=0

Angular 
Acceleration
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Rigid Body Dynamics

Angular motion [Euler Rotation Equation]:

Equations of Motion
Lineal motion [Newton 2nd’s Law]:

Newton-Euler Equations of Motion
With rC=0

Gyroscopic
Precession

Precession
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Rigid Body Dynamics

Angular motion [Euler Rotation Equation]:

Equations of Motion
Linear motion [Newton 2nd’s Law]:

Matrix Equations of Motion

Can be expressed as:

where
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Rigid Body Dynamics

Inertia 
Tensor
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y
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• Inertial tensor describes the mass distribution of the body
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Rigid Body Dynamics

Inertia 
Tensor

x

y

z

• Inertial products involving an axis 
orthogonal to a symmetry plane are 0
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Rigid Body Dynamics

Inertia 
Tensor
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⨯ ⨯
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⨯ ⨯
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• Inertial products involving an axis 
orthogonal to a symmetry plane are 0

• XZ Symmetry  ⇒ y⊥XZ ⇒ Ixy= Iyx= Iyz= Izy= 0 
• XY Symmetry  ⇒ z⊥XY ⇒ Ixz= Iyx= Izz= Izy= 0 
• YZ Symmetry  ⇒ x⊥YZ ⇒ Ixy= Iyx= Ixz= Izx= 0 

• 2 planes of symmetry means I is diagonal:



Marine Systems & Robotics – Unit 02: AUV Modelling

Hydrodynamic Forces

Added Mass Forces

Pressure-induced forces required to accelerate a certain amount of surrounding 
water moving with the vehicle. Opposes to the vehicle motion. They depend on the 
vehicle shape.

x

y

z
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Hydrodynamic Forces

Added Mass Forces

Pressure-induced forces required to accelerate a certain amount of surrounding 
water moving with the vehicle. Opposes to the vehicle motion. They depend on the 
vehicle shape.

Where:
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Hydrodynamic Forces

Added Mass Forces

Pressure-induced forces required to accelerate a certain amount of surrounding 
water moving with the vehicle. Opposes to the vehicle motion. They depend on the 
vehicle shape.

Can be written using a matrix equation:

Where:

A common simplification is to consider MA Diagonal
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Hydrodynamic Forces

Added Mass Forces
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Hydrodynamic Forces

Restoring Forces

Forces acting on the submerged body trying to bring it to an equilibrium point:

Gravity 
Force

Buoyancy Force

x
y

z

{N}
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Hydrodynamic Forces

Damping Forces

Skin Friction: Linear Friction due to the laminar boundary layer.
Form Drag: Quadratic non-linear friction due to the turbulent boundary  layer.

Can be written using a matrix equation:

Where:
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Propulsion

Thruster Forces

When the propeller rotates at n [rev/s] it exerts a thrust T and a torque Q. 

Surge speed

Propeller angular speed

Thrust

Torqu
eEfficiency

Advance Speed (fluid velocity at 
the propeller when it is at rest)

Advance Ratio. Distance travelled 
in one propeller revolution

J

D
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Propulsion

Thruster Forces

When the propeller rotates at n [rev/s] it exerts a thrust T and a torque Q. 

• KT is  ≈  linear in 
J

• So T becomes

• Obtaining a bilinear model
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Propulsion

Thruster Forces

When the propeller rotates at n [rev/s] it exerts a thrust T and a torque Q. 

• KQ is  ≈  linear in 
J

• Obtaining a bilinear model
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Propulsion

Thruster Forces

When the propeller rotates at n [rev/s] it exerts a thrust T and a torque Q. 

• Resultant Force Unitary vector in the
Thrust direction

Force application 
point

Thruster Configuration Matrix
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Environmental Forces

Ocean currents

• A common approach considers only irrotational currents constant in the N-Frame:

• They can be referenced to the B-Frame:

• Now we can define the fluid relative velocity:
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The Model

Hydrodynamic Model

The complete model includes the rigid body dynamics as well as the hydrodynamics

Rigid Body Dynamics Hydrodynamics Restoring
Forces

Force
Torqu
e
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The Model

Hydrodynamic Model

The complete model includes the rigid body dynamics as well as the hydrodynamics

• Taking into account the currents 
:
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The Model

Common 
Simplifications
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Model Identification

• How do we estimate the 27 parameters of the model?
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Model Identification

• Let us consider the surge equation of motion:

Buoyancy 
& gravity

Skin FrictionThruster 
Forces

Perturbation

Resultant Force in x

• If Neutrally Buoyant ⇒W=B
• If the robot performs and a single DOF uncoupled motion ⇒ B=W & w=q=v=r=0

• In general, this holds for any DOF i:

⨯ ⨯⨯
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Model Identification - URIS UUV

• An uncoupled experiment is run exciting a single DOF i, so the equation of motion is:

• The force position and velocity times series are measured, being used in the following 
equation which is linear in the set of model parameters

• The parameters are estimated through Least-Squares algorithm
= +
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Model Identification - URIS UUV
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Model Identification - URIS UUV
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Model Identification - URIS UUV
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Model Identification - URIS UUV
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Questions ?


