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• Great at survey missions
• Pre-planned path
• LBL localization system
• Limited to no autonomy

Current Autonomous Underwater Vehicles
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• operate successfully while 
unsupervised

• operate for extended lengths of time
• operate in environments which are 

not completely known
• apart goals in response to 

unexpected events and disturbances
• recover from errors in task execution

Persistent autonomy
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The role of the knowledge base
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• Signal and sensor data processing

• (Deep) Learning

• Knowledge Representation and Reasoning

- F Maurelli, Z Saigol, G Papadimitriou, T Larkworthy, V De Carolis, D Lane, Probabilistic approaches in
ontologies: joining semantics and uncertainty for AUV persistent autonomy; Proceedings of IEEE-
MTS Oceans'13, San Diego, USA

- F Maurelli, Z Saigol, D Lane, Cognitive knowledge representation under uncertainty for
autonomous underwater vehicles; IEEE ICRA'14 Hong Kong, Workshop on Persistent Autonomy for
Underwater Robotics

- F Maurelli, S Krupiński, A semantic-aided particle filter approach for AUV localization, 2018
OCEANS-MTS/IEEE Kobe

- L Mucolli, S Krupinski, SA Mehdi, S Mazhar, F Maurelli, Detecting cracks in underwater concrete
structures: an unsupervised learning approach based on local feature clustering, OCEANS 2019
MTS/IEEE SEATTLE

Subsystem A - External
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Feature Extraction (Haar Features)

Feature Selection & Classification (AdaBoost)

Incremental Learning (Cascade) 

large set of features
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or False Alarms

small set of critical features
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Sensor Processing – sidescan sonar
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Sensor Processing – forward looking sonar
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Sensor Processing – forward looking sonar
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Sensor Processing – forward looking sonar
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Sensor Processing – camera



11Marine Systems & Robotics – Persistent Autonomy

Sensor Processing – camera
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Sensor Processing – camera



13Marine Systems & Robotics – Persistent Autonomy

What is the problem?

 Same sensor data leading
to different possible objects

 What to do in order to 
understand if the sensor data
are actually representing
Shape A, Shape B Shape C?

Need for smart inspection
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Smart inspection in the architecture
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 Build a tree-style trajectory, composed by n basic moves

 For each node, evaluate the benefits and the costs
associated

 End with the most effective trajectory [or waypoint] in 
between a maximum depth

[On AUV actions to correctly label world information F. Maurelli, Z. Saigol, D. Lane, M. 
Cashmore, B. Ridder, D. Magazzeni. IEEE-MTS Oceans’14, St. John’s, Canada.]

Action planning: tree-style trajectory
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Variance of 
measures

Gain of the node
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Gain function
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Example
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Results
- several runs in simulation changing two parameters:

 Sonar Range, from 4m up to 50m

 Unit step for path planning, from 2m up to 12m

- the bigger the range, the shorter the path

- the bigger the unit step, the shorter the path

 Warning: it needs to be small enough to allow a granular path in 
complex environments
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Unit: 2m
Range: 4-16 m

Unit: 4m
Range: 4-16 m

Results
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What to do with new waypoints?
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Subsystem B: internal
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Thruster Diagnosis
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Thruster Model
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Fault Model
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Fault Mitigation
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Allocation
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[Energy-aware fault-mitigation architecture for underwater vehicles, V De Carolis, F 
Maurelli, KE Brown, DM Lane, Autonomous Robots 41 (5), 1083-1105 - 2017]

Thrust Remapping
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Indoor Experiments
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Experimental Results
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Experimental Results
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Forward Thruster Results
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Lateral Thruster Results
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Sea Trials Results
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Navigation
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Energy Performance
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Thruster Failure
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Thruster Failure
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Thruster Failure
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Subsystem B: internal
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Subsystem B: internal
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Questions ?


