Marine Systems & Robotics Cooperative Marine Robotic Systems: Theory and Practice – Part 2

Prof. Dr. Antonio Pascoal

http://impact.uni-bremen.de/

ity of Universitat de Girona

The WiMUST Coop. NC Architecture

Objectives

Design and performance analysis of the systems required to afford the WiMUST fleet the capability to execute cooperative missions for seismic data acquisition.

Tasks

- Cooperative Navigation
- Cooperative Motion Control
- Cooperative Motion Planning

Multiple Vehicle Formation Control

Key practical objective: multiple vehicle formation for automated seismic surveys

Basic Building Blocks

Basic building blocks

- 2 Acoustic sources: Delfim and Ulisse ASVs
- 2 Anchors and Distributed acoustic receiver array: Delfim and Medusa Black ASVs, Folaga 1 and Folaga 2 + Medusa Red and Medusa Yellow AUVs

Enabling Multiple Vehicle Primitives

- DEFIM and ULISSE "set the pace" for the group of ASVs and follow pre-specified paths alongside, executing a **Cooperative Path Following (CPF)** maneuver.
- **Delfim is the reference vehicle:** it transmits it successive positions to the AUVs and to the Medusa Black ASV.

Enabling Multiple Vehicle Primitives

 The AUVs and Medusa Black track spatially "shifted replicas" of the DELFIM trajectory by executing a Coordinate Trajectory Tracking (CTT) maneuver.

Cooperative Navigation

Objective

Geo-reference the vehicle fleet and the streamer hydrophones *Where are the vehicles? Where are the hydrophones?*

Practical constraints

- Rely strongly on acoustic inter-vehicle ranging devices and internal motion sensors
- Avoid expensive inertial-like navigation units

Communications and Positioning Network

Units with synchronized atomic clock: hardware of **EvoLogics (GER)**

Anchors: agents capable of transmitting their global position via acoustic modems. Their placement should be favorable for localization purposes.

IJÎ

IJŤ

Cooperative Navigation Vehicle positioning: Acoustic Navigation Architecture

- Each AUV obtains ranges to the anchors and their global positions
- Scalable navigation:
 - Acoustic cycle depends only on the number of anchors
 - For navigation, a minimum of two anchors are required
 - Navigation performance increases with the number of anchors
- Less dependence on high-end inertial navigatic units
- Extendable to large numbers of AUVs

Theoretical Set-up: Maximum Likelihood Estimation

Cooperative Navigation Extended Kalman filter for multiple anchor nodes

Sines Port Trials (2016/11/24) - Results

ll

Cooperative Motion Control

Lead the fleet to a desired geometric formation and change the geometry according to external commands

Practical constraints

- Heterogeneous vehicle fleet
- No fast communications among the underwater fleet

Cooperative Motion Control

Single Vehicle Primitives

- Inner-loop controllers: track surge speed, heading and depth references
- **Waypoint**: go to point with specified coordinates, then hold position
- **Path Following**: converge to and follow a spatial path at a given speed profile
- **Trajectory tracking:** track a desired spatial curve parameterized by time

Path Following

- Vehicle follows a path at a speed that may be path dependent (no explicit timing law)
- Control strategy

set longitudinal speed to prescribed value
set heading command to the direction of the path + correction for cross-track error

Path Following

Vehicle moves along a path at a desired speed. Path following algorithm issues speed and heading commands to the vehicle's inner loops.

Trajectory Tracking

Vehicle tracks a desired trajectory

Single Vehicle Primitives

The DELFIM AUV – Azores and Lisbon, PT

The MEDUSA HYBRID ASV/AUV – LISBON, PT

Path Following

Multiple Vehicle Primitives

- Cooperative Path Following
- Coordinated TrajectoryTracking
- Cooperative Formation Control

- Multiple vehicles following different paths
- *Define* normalized along-path coordinate γ for each path/segment (i.e. starting point $\gamma = 0$, end point $\gamma = 1$)
- At each cycle, each vehicle:
 - Broadcasts its current γ , receives γ 's from other vehicles
 - Computes average of all γ 's received, denoted γav
 - Adjust speed based on its *γerror=γ-γav*

Vehicles reach consensus on path parameter γ !

N vehicles converge to and follow N assigned at a common, desired normalized speed, while adopting a given geometric pattern

IJÎ

Rooted in: MPC-PF (**Model Predictive Control**), **Cooperative Control**, and **Event-Triggered Communications** (Hung and A. Pascoal, 2018)

IJÎ

IJÌ

Coperative Path Following

Circular formation Evolution of the path parameters 2.5 Vehicle trajectories 2 40 1.5 30 0.5 20 -0.5 20 40 60 80 100 120 140 t[second] Y[m]**Communication Signals** -10 -20 -30 100 120 20 40 60 80 -40 -30 -20 -10 0 10 20 30 40 50 60 X[m]

Key components: the MEDUSA ASVs

 3 autonomous vehicles (cooperative motion control capability)
 Acoustic network (Tritech micromodems)

COBRUUS

Cooperative Cognitive Control for Autonomous Underwater Vehicles

www.Co3-AUVs.eu

Coperative Path Following- Experiments

IJÎ

Coordinated Trajectory Tracking

The Delfim ASV transmits periodically its position to all the AUVs. The AUVs build a sliding buffer of constant size with the positions received (using a lastin, first-out procedure), fit smooth trajectories to them, and track the resulting trajectories

Coordinated Trajectory Tracking – Implementation

- Leader-follower strategy, *no a-priori* knowledge of the path traversed by the leader
- Advantages: simple, requires little information exchange through the acoustic network
- Limitation: over-reliance on a single vehicle

Buffering

Buffered

Position

Path -

Leader

positions

Coordinated Trajectory Tracking (CTT) - Experiments

Sines (2016/11/24) Medusa Black or Delfim Catamaran as Leaders

Coordinated Trajectory Tracking (CTT) - Experiments

Lisbon Trials (2017/11/27) 2 followers

Cooperative Trajectory Tracking Fold preview using real navigation data – Sines Port

- 1 sparker on a moving platform and another stationary;
- 2 Medusa vehicles carrying streamers;
- Streamer with 8m length and 8 elements;
- Bin(cell) size of 4m ;
 - Assumption: streamer motion is "similar" to that of the towing vehicle

Equiv

sparke

Offset for H

CRP

sparker

Equiv. H

Coordinated Trajectory Tracking Fold preview using real navigation data – Sines Port

Full system implementation and final mission at sea

0:29

Technical Highlights & Seismic Data Acquired

Full system implementation and final mission at sea

1:07 and 2:00

Cooperative Motion Planning and CTT in WiMUST

Wi MUST Widely scalable Mobile Underwater Sonar Technology

Go-To-Formation Maneuver – U. Hertfordshire, UK

Full system implementation and final mission at sea

Technical Highlights & Seismic Data Acquired

ſſ

Towards Cooperative Geotechnical Surveying in Shallow Water

Hybrid Acoustic-Optical Communication Networks

Acoustic Networking. **High frequency 42-65 kHz modem and USBL units:** data transfer rates up to 31.2 kbit/s over a 2000 m range

The BlueRay optical modem developed at IST

The BlueRay Optical Modem (IST)

Specifications

Range sea water	12m
Range harbour water (visibility 1m)	3,5m
TX Power	12W
Beam divergence	12º
Receiver Aperture	45º
Data rate	20kbit/s
Modulation	ООК
Encoding	Manchester
Price	~150€
Dimensions	D = 105mm L = 100 mm
Obs.	Robust to high background light

New units capable of transmission rates in the range from **200kbit/s** up to **1Mbit/s** will become available soon.

IJÌ

The BlueRay Optical Modem (IST)

Receiver

- Photodiode
- Transimpedance amplifier
 scheme
- Hardware filters

Transmitter

- High power LEDs
- Direct drive with MOSFETs

Other features

Clock synchronisation
 between modems jitter
 < 50us

Cooperative Control using Optical Comms

Recent exciting results: Range-BasedTarget localization

Set-up

- A tracker with a GPS
- A target at a depth of 1[m]
- Target moving at a constant speed of 0.2[m/s]
- Range measurements every 1.5[s]
- "Open water" experiments

Key assumptions

- Target position was unknown
- No currents
- Transmit velocity vector information

EXPO'98 Site, Lisbon, PT

Integrated Motion Planning, Control, and Estimation

Recent exciting results: Range-BasedTarget localization

Recent exciting results: Range-BasedTarget localization

Mission Control Console on shore

Challenges: Navigation, Energy, Hybrid Vehicles

Long-range Geophysical Navigation (using terrain and Geomagnetic maps of the seabed)

> Nonlinear Filtering Monte Carlo Methods

ſſ

- Exploit information from the environment for self-localization
 - Natural features: elevation; reflective properties...
 - Artificial features: submarine cables or trenches; moorings; ship wrecks...

Courtesy: Hafmynd, Ehf

IJÎ

- Terrain-Aided Navigation (TAN a.k.a. TRN, TBN)
 - Use a **prior map** of the environment.
 - Make **observations** of the terrain
 - Match observations against the map to estimate position.

ļÌ

Geophysical Navigation

Map matching

Can be done sequentially or in batch without explicit feature extraction and data association/registration.

Simultaneous Localization and Mapping (SLAM)

- Sequentially acquire/refine a map of the terrain & simultaneously use this map for self-localization.
 - Use sparse, metric or topological maps of the terrain.
 - Apply explicit feature extraction and data association.

ſ

Terrain Aided Navigation (TAN) Filters

ll

TAN – Monte Carlo Methods (Particle Filters)

TAN – DVL Implementation

ſſ

TAN – DVL Implementation

300m

-6.875 -6.250 -5.625 -5.000 -4.375 -3.750 -3.125 -2.500 -1.875 -1.250 -0.625 Topography (m)

IJÎ

TAN – DVL Implementation

62

ſ

TAN – DVL Implementation

Geomagnetic Navigation

IJÎ

ſſ

Geophysical Navigation

Terrain and Geomagnetic-Based Methods

The problem of ambient and vehicle noise suppression

- Tow the magnetometer
- Use a mag. gradiometer

ព្រ

Geomagnetic Navigation

Sensors used (mags, gradiometers)

IJÎ

Geophysical Navigation

Integrating bathymetry and geomagnetics

IJÎ

Geophysical Navigation Using Magnetic Data (MEDUSA GN System)

MEDUSA with magnetometer

Geophysical Navigation Using Magnetic Data (MEDUSA GN System)

Surface Magnetometer - S.Pedro do Estoril Contour Map +4.282e6

Real trajectory followed by the vehicle, compared with the trajectory estimated by dead-recknoning and the MAGNAV filter.

IJÌ

ſſ

Hybrid Vehicles

Hybrid Vehicles

- Capitalizing on the know-how obtained from years of developing the MEDUSA Class AUVs
 IST main contributions:
 - Navigation and Control Systems
 - Development
 - Implementation
 - Optimization

The Call of the ABYSS

The LUSO ROV – 6000 m depth

The MEDUSA Deep Sea AUV - 3000 depth

ſ

The LUSO ROV

LUSO ROV Navigation

- Pilots depended on noisy, unreliable, infrequent Ultra-Short Baseline (USBL) position fixes
- A reliable, continuous-time estimate of the ROV position would allow for precise georeferencing and assist pilots
- Navigation should take advantage of other sensors, e.g. the Doppler Velocity Log

Measurements available

IJÎ

Deep Going Ocean Vehicles

Final setup & testing at sea

The big push forward

Bring about a true revolution in the marine technology area by:

- Focusing on challenging flagship initiatives driven by end-users (including aquaculture, renewable energies, fisheries, and ocean modeling)
- Merging innovation with core technologies for seamless access to the water column, critical infrastructures, and the **deep sea**.

ſ

A Vision of the Future: the EC PASS intiative

<u>Sustained presence at sea</u>: offshore wave and wind energy harvesting, deep sea lab maintenance

Massachusetts Institute of Technology

ſ

SOS4ATLANTIC: A NEW MIT-PT INIATIVE

A Multi-Domain Atlantic Ocean-Space Observation System: Science, Technology, and Society

SOS4ATLANTIC

A System of Systems approach integrating Space, Air, and Marine segments

Target use-case: Study of ocean front dynamics and how they impact on pelagic and deep sea ecosystems

Vision: lay the foundations for an Atlantic Ocean Observation Platform with far reaching scientific, commercial, and societal impact.

SOS4ATLANTIC

A System of Systems approach integrating Space, Air, and Marine segments for Ocean Science

Networked adaptive ocean observation

Multi-vehicle SOSystems

Ocean front and ecosystem studies

SOS4ATLANTIC

A showcase of technological assets for science and the industry

NRP D. Carlos class Oceanographic Vessel

RV Águas Vivas

Fleet of 20 surface and underwater autonomous marine robots – FEUP, IST, MIT 10 unmanned air vehicles – FEUP & TEKEVER

Massachusette Institute of Technology

ſſ

EU - ANZAR

Karstic exploration using autonomous robots (water reservoir management)

NEAR FUTURE : THE ANZAR EUROPEAN EXTENSION

EU - SARDINES

Detection, Tracing, and Mapping of Microplastics in the Ocean

Massachusetts Institute of Technology

ſſ

EU - SARDINES

Detection, Tracing, and Mapping of Microplastics in the Ocean

If Streamers, Mags, and OBS (Ocean Bottom Surveying units)

Massachusett: Institute of Technology

IJÎ

EU - DRIIM

A Distributed Robotic-Based System for Underwater Infrastructures Inspection

IJÎ

The future: Cooperative Robots and Humans in the Loop

Ocean Literacy Cultural Heritage (underwater archaeology)

National and International Cooperation

- Woods Hole Oceanographic Institute (WHOI, USA)
- L'Institut Français de Recherche pour l'Exploitation de La Mer (FR)
- Zentrum fur Marine Umweltvissenschaften at Bremen (MARUM, DE)
- Norwegian University of Science and Technology (NTNU / AMOS, NO)
- National Institute of Oceanography (NIO, Goa, INDIA)
- National Institute of Ocean Technology (NIOT, Chennai, INDIA)
- Center for Maritime Research and Experimentation (CMRE, La Spezia, IT)
- Korean Advanced Institute of Science and Technology (KAIST, Korea)
- Carnegie Mellon University, Pittsburgh (USA)
- Naval Postgraduate School, Monterey, CA (USA)
- École Polytechnique Fédérale de Lausanne (EPFL, Lausanne, CH)
- Universidade de S. Paulo (BR)
- IMAR/DOP/Uaçores (PT)
- Faculdade de Engenharia da Univ. Porto (FEUP, PT)
- EMEPC, PT

Questions ?

National Technical University of Athens

Marine Systems & Robotics – Cooperative Marine Robotic Systems