Marine Systems & Robotics Cooperative Marine Robotic Systems: Theory and Practice – Part 1

Prof. Dr. Antonio Pascoal

http://impact.uni-bremen.de/

ityof Universitat de Girona

The work of many

IJÎ

EC-CO₃AUVs

2009-2012

FP7-ICT-2007-3 GA 231378 **CO3-AUVs**: Cooperative Cognitive Control for Autonomous Underwater Vehicles, 2009-2012

EC-MORPH

FP7-ICT-2011-7 GA 288704 **MORPH**: Marine Robotic System of Self-Organizing, Logically Linked Physical Nodes, 2012-2016

EC-CADDY

2014-2016

FP7-ICT-2013-2 GA 611373 **CADDY:** Cognitive Autonomous Diving Buddy, 2014-2016

EC-WiMUST

2015-2018

H2020-ICT-2014-1/ GA 645141 **WIMUST**: Widely Scalable Mobile Underwater Sonar Technology, 2015-2018

IJÌ

Marine Science, Technology, and Society – why the effort?

Ocean Exploration and Exploitation (OEE)

Extended Continental Shelf (submitted) Portugal (an example)

- Exclusive Economic Zone
- Extended Continental Shelf
 4 million km²

91% of EU territory (land)

- Fisheries and Aquaculture
- Genetic and Living Resources
- Mineral / Hydrocarbon / Oil & Gas Exploitation
- Offshore and Wave Energy Harvesting
- Environmental Monitoring
- Critical Infrastructures Inspecion
- Maritime Logistics

Continential

The Pillars of Ocean Exploration and Exploitation

I - Engineering Systems - Technology II - Science, Industry, Innovation

Knowledge Transfer, Outreach Activities

ſſ

IJÎ

Scientific Challenges

To study the

Physical, Chemical, Biologic, and Geologic

phenomena that occur in the ocean and its interfaces (with the atmosphere and the Earths's interior)

Observe, Monitor, and Map

The tools of the trade

- Technologies for ocean exploration including networked air and marine robots
- Robotic systems for the inspection of critical marine infrastructures and seabed/subbottom mapping

IJÎ

The Middle Atlantic Ridge and the Azores

A chain of mountains at the bottom of the Atlantic ocean

Mission Scenario

Underwater Hydrothermal Vents (Azores, Portugal)

IJÎ

The Azores Triple Junction (ATP)

The region harbours a great variety of *seamounts, active underwater volcanoes, chemosynthetic ecosystems, and "extreme" life forms (extremophyles)*

IJÎ

Deep Water Hydrothermal Vents

Replay 1106

Underwater Hydrothermal Vents

The Need for Technology

Vents are very hard to study:

Large depth (pressure is high) Highly corrosive environment Lack of optical visibility Navigation is a challenge (lack of a GPS-like system)

Submersibles: place human lifes at risk

Shallow Water Hydrothermal Vents

Hydrothermal activity at the D. João de Castro seamount Azores, PT

Single Agent Operations: shallow water

No humans on board, please

Use an Autonomous Surface Vehicle to MAP the seafloor

Mapping the seabed with an ASV

Systems in place: *Navigation, Guidance and Control for Path Following* **Navigation: GPS**

Comms: radio

Path following: Inner-outer loops for accurate tracking in the face of ocean currents and wind.

ſ

IJÎ

Go deeper with an AUV

Navigation: Dead-reckoning (AHRS and Doppler unit)

Comms: acoustic

Systems in place: *NGC for*

- Path Following in 3D
- Altitude Control Mapping sensor suites

Cooperation Links with India

Cooperation with Goa (NIO)

IJî

The MAYA AUV – IST/NIO

Interchange of Researchers PT-INDIA; co-project via Web

The MAYA AUV – IST/NIO

Interchange of Researchers PT-INDIA; co-project via Web

Cooperation with India (NIO and NIOT)

Amthnem, Goa

Work and tests in India

Cooperation with India (NIO and NIOT)

Cooperation with India (NIO and NIOT)

IJÎ

MAYA - AUV

IJÎ

Challenges

- Tremendous pressure
- Highly corrosive environments
- Lack of optical visibility
- Navigation is exceedingly hard (no GPS)
- Low acoustic communication bandwith (32kb/s)

Opening the multiple vehicle frontier

Underwater Communications - very hard!

Opening the multiple vehicle frontier

Underwater Communications

Transmit in the vertical !

Multi-vehicle operations

The ASIMOV concept (ASIMOV project, EC – 2000) – PT, FR, UK

Difficulties: **no** reliable comms, miniaturized acoustic positioning systems, and tools for seamless implementation of Motion and Mission Control systems (ROS was not born yet!)

IJÎ

Neworked Systems : a New Era (2009 -)

IJÎ

MORPH / EC (2012-2016)

Cooperative Marine Robots for Marine Habitat Mapping in Complex Underwater Environments: A New Paradigm

A joint company of ThyssenKrupp and EADS

TÉCNICO

Consiglio Nazionale delle Rice rohe

ILMENAU

MORPH / EC (2012-2016)

Habitat Mapping in complex 3D environments

Underwater cliffs, canyon walls, fracture zones, seamount flanks, hydrothermal chimneys

MORPH / EC (2012-2016)

A team of agents operating as a virtual super marine vehicle

Key MORPH concept: *a self-reconfiguring robot for operations in complex 3D marine environments*

ព្រ

The adaptive MORPH configuration

MORPH / EC (2012-2016)

Cooperative Marine Robots for Marine Habitat Mapping in Complex Underwater Environments: A New Paradigm

MORPH Azores, PT, 2014

Marine robotics system of self-organizing logically linked physical nodes

Azores trials 2014

MORPH Girona, SP, 2015

ſ

Making it all happen: UAVs, AUVs, ASVS

Transition from the Lab to the Real World through *in-house development of advanced systems and tools* (e.g. marine and air robots, software tools for operational oceanography).

The sea-going machines

ព្រ

Labs and equipment

Acoustics-enabled formation control (MORPH project, AZORES, Sept. 2014)

ſſ

The MEDUSA-class vehicles (AUV/ASV)

Transportation and deployment

3 MEDUSAs can be transported in a van or small trailer

Transportation to water by a single person in a cart

The same cart can be used to deploy/recover the vehicle

Software architecture overview

- Built in **ROS** (Robot Operating System)
- Easy to extend: create *nodes* that *subscribe* to existing *topics* to obtain information, then *publish* to other *topics* related to lower-level features
- Lots of *packages* publicly available from the community

Mission control console

- Browser-based: works in different OSs and browsers, adopting Google's Material Design guidelines – ongoing
- Enables operator to visualize vehicle positions in a map, monitor vehicle states, issue commands to vehicles
- Design/load complex missions or bathymetry data from files

Mission programming

- Draw missions containing complex shapes by connecting segments
- Can be exported and imported through mission files

Simulation pipeline

"MEDUSA_{DS} – OPENING THE DEEP SEA FRONTIER" (2015-2017)

MINISTÉRIO DA AGRICULTURA E DO MAR

MEDUSA_{DS} / EC (2015-2017)

Scenario – Bentic Lab Data download and water column profiling

ĥ

Lar

MEDUSA_{DS} – OPENING THE DEEP SEA FRONTIER

TIT

LINE .

OPENING THE DEEP-SEA FRONTIER

Tales of Housing pre

Scenario – Bentic Lab Data download and water column profiling

1.21

MEDUSA_{DS} – OPENING THE DEEP SEA FRONTIER

1-

System Breakdown

EXPO'98 Site, Lisbon, PT

Test Facilities

S. Pedro do Estoril - Prior Total Magnetic Field Map

Tagus River, Portugal

IJİ

Probing under the seabed : the EC WiMUST project

All marine seismic surveys involve a source (S) and some kind of array or receiver sensors (individual receiver packages are indicated by the black dots). '1' illustrates the towed streamer geometry, '2' an ocean bottom geometry, '3' a buried seafloor array (note that multiple parallel receiver cables are subtly displayed), and '4' a VSP (vertical seismic profile) geometry, where the receivers are positioned in a well.

S-acoustic source

- 1-Towed receiver geometry (hydrophones)
- 2- Ocean bottom geometry
- 3- Buried seafloor array
- 4- Vertical seismic profiler

Widely scalable Mobile Underwater Sonar Technology

Marine seismic surveys

- Vessel tows acoustic sources and long cables (streamers) up to 10km long, equipped with hydrophones, very close to the surface
- Acoustic sources shoot, waves reflect/refract off geological features on and beneath the seabed, hydrophones pick up these reflections
- Processing allows for inference of geophysical features

IJî

Ultra high resolution Seismic Surveys in 2D and 3D 64

Key applications: design of foundations for overwater and subsea structures and anchors; assessment of burial performance for pipelines and cables – marine windfarms

IJİ

Ultra High Resolution Seismic (UHRS) surveys

IJî

Courtesy of Henrique Duarte, GeoSurveys, Aveiro, PT

The WiMUST concept

Wi MUST Widely scalable Mobile Underwater Sonar Technology

The WiMUST concept 2:42

A new concept: automated seismic surveys

A new concept: automated seismic surveys

WiMUST Widely scalable Mobile Underwater Sonar Technology

WiMUST

Widely *s*calable mobile Underwater Sonar Technology

lisbon trials December 2015

- 2 ASV; towing 2 stramers -

http://www.wimu/t.eu/

Integration of Sparkers and Power Supplies on Autonomous Vehicles (world premiere)

Integration of Sparkers and Power Supplies on Autonomous Vehicles

ULISSE, ISME, Italy

ſ

Automated Sparkers/Receivers: Field Tests

SINES. July 2017

The theory behind: a glimpse

Cooperative, Networked Motion Planning, Navigation, and Control Nonlinear Control and Estimation, Range-based Localization, Optimization, Event-Driven Systems, Optical and Acoustic Communications

IJÎ

Mission specification

Cooperative motion planning

Nominal trajectories & desired vehicle formation

Cooperative motion control

Global and local, relative vehicle positions

Cooperative navigation

IJî

Cooperative systems: key blocks required
Strong parallel with Cooperative UAVs

Time-Critical Cooperative

Control of Autonomous Air Vehicles

Time-Critical Cooperative Control of Autonomous Air Vehicles

I. Kaminer • A. Pascoal • E. Xargay • N. Hovakimyan V. Cichella • V. Dobrokhodov

The advent of powerful embedded systems and communications networks has spawned widespread interest in the problem of cooperative motion control of multiple autonomous vehicles that will be engaged in increasingly demanding scientific and commercial missions.

Time-Critical Cooperative Control of Autonomous Air Vehicles presents a theoretical framework that addresses new and challenging multiple vehicle mission requirements, yielding control strategies for temporal coordination of networked autonomous agents that are subjected to tight spatial constraints.

The book gives the reader a thorough, integrated presentation of the different concepts, mathematical tools, and networked control solutions needed to tackle and solve a number of problems in the general area of time-critical cooperative control. In particular, it integrates algorithms for path following and time-critical coordination that together give a team of unmanned air vehicles (UAVs) the ability to meet simultaneously desired spatial and temporal specifications.

By including case studies in the control of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. The theoretical presentation and simulations are complemented with the results of actual fight tests with real UAVs.

This book is intended for researchers and practitioners from academia, research labs, commercial companies, government agencies, and the international aerospace industry.

About the authours

Isaac Kaminer received his PhD in Electrical Engineering Systems in 1992 from the University of Michigan, MI, USA. He is a Professor at the Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, USA

António Pascoal received his PhD in Control Science in 1987 from the University of Minnesota, Minneapolis, MN, USA. He is an Associate Professor of Control and Robotics at IST, University of Lisbon, Portugal and a Senior Researcher at the Institute for Systems and Robotics-Lisbon. He is also an Adjunct Scientist with the National Institute of Oceanorapoly (NIO), Goa. India.

Enric Xargay earned his PhD in Aerospace Engineering in 2013 from the University of Illinois, Urbana, IL, USA. He is Cofounder and Director of CSTAR PPe Ltd, a company that focuses on the development of guidance, navigation, and control technologies for autonomous systems.

Naira Hovakimyan received her PhD in Physics and Mathematics in 1992, in Moscow, from the Institute of Applied Mathematics of the Russian Academy of Sciences, in the area of optimal control and differential games. She is currently a W. Grafton and Lillian B. Wilkins Professor of Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign.

Venanzio Cichella received his BS and MS degrees in Automation Engineering in 2007 and 2011, respectively, from the University of Bologna, Italy. He is currently a PhD student in Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign.

Vladimir Dobrokhodov received his PhD in Aerospace Engineering in 1999, from the Zhukovsky Air Force Engineering Academy of the Russian Academy of Sciences in Moscow, in the area of aircraft flight dynamics and control. He is currently an Associate Professor at the Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, USA. Kaminer, Pascoal, Xargay Hovakimyan, Cichella, Dobrokhodov

I

Butterworth-Heinemann An imprint of Elsevier elsevier.com/books-and-journals

ENGINEERING

Time-Critical Cooperative Control of Autonomous Air Vehicles

<u>В</u> Н

I. Kaminer • A. Pascoal • E. Xargay • N. Hovakimyan V. Cichella • V. Dobrokhodov

Questions ?

National Technical University of Athens

Marine Systems & Robotics – Cooperative Marine Robotic Systems